收藏本站   |   网站地图   |   联系我们   |   ENGLISH   |   中国科学院
当前位置:首页 > 学术报告

李凡星学术报告会

文章来源:  |  发布时间:2016-07-22  |  【打印】 【关闭

  

  应中国科学院可再生能源重点实验室和广东省新能源和可再生能源研究开发与应用重点实验室的邀请,美国北卡罗来纳州立大学李凡星博士将于2016725日来访并举行学术报告会。报告会安排如下:  

      间:2016725日(周一)上午1000-1100  

      点:生物质大楼910会议室  

  报告题目:过渡金属氧化物在碳基燃料可持续转化中的应用 

  Tailored Transition Metal Oxides for Sustainable Carbonaceous Fuel Conversion 

  报告摘要: 报告的内容主要涉及过渡金属氧化物氧化还原催化剂在碳基燃料催化、燃烧、乙烷脱氢制乙烯等领域的研究进展。 

  As an alternative approach for carbonaceous fuel conversion and CO2 capture, the so-called chemical looping strategy utilizes redox properties of first-row transition metal oxides to simplify the conventional energy conversion processes. In a typical chemical looping process, carbonaceous feedstock is oxidized into products such as CO2 by active lattice oxygen (O2-) in the transition metal oxide particles, a.k.a. oxygen carrier. In a subsequent step, the O2--deprived oxygen carrier particles are replenished by a gaseous oxidant, generating hydrogen or heat. The cyclic redox operation, often carried out in circulating fluidized bed reactors, has the potential to significantly reduce the exergy loss for carbonaceous energy conversion and carbon dioxide capture.  

  While a number of supported metal oxides have demonstrated promising redox performances, further improvements of the activity and redox stability of these oxygen carriers are of critical importance for successful deployment of this novel technology. To date, oxygen carrier development largely relies on a trial-and-error type of approach. We present a rationalized strategy for oxygen carrier optimization: to arrive at oxygen carriers with superior activity, the rate limiting step for the redox reactions is first identified. Mixed ionic-electronic conductive support that de-bottlenecks such a rate limiting step is then used to improve the metal oxide activity by two orders of magnitude. Investigation of oxygen carrier deactivation mechanisms further sheds light for designing oxygen carriers with both high activity and extended lifetime. Besides their applications in chemical looping combustion, transition metal oxides with tailored nano-structures for methane partial oxidation and solar-based water-splitting are also exemplified. A redox based oxidative dehydrogenation process for ethylene production from ethane will be discussed in detail in terms of redox catalyst development and characterizations as well as process simulations, which indicate significant reduction in NOx and CO2 emissions compared to state-of-the-art. 

  报告人简介:李凡星,博士,副教授。现任职于美国北卡罗来纳州立大学化学与生物分子工程系副教授。2001年本科毕业于清华大学化工系;2004年获清华大学化工专业硕士学位;2009年获美国俄亥俄州立大学博士学位,师从美国著名化工与流体专家美国国家工程院院士Liang-Shih Fan教授。李凡星博士已发表论文40余篇、申请专利11项;先后获得美国Particle Technology Award最佳博士奖、美国国家自然科学基金CAREER职业奖、SABIC年轻科学家奖(AIChE)、北卡罗来纳州Sigma Xi员工研究奖、北卡罗来纳州立大学优秀学者奖等。    

  参加人员:请废弃物处理与资源化利用研究室的科技人员和研究生参加,同时欢迎其他感兴趣的人员参加。

版权所有 © 中国科学院广州能源研究所 备案号:粤ICP备11089167号-2
地址: 广州市天河区能源路2号 电话:020-87057639(办公室) 87057637(科技处)
传真:020-87057677 E-mail:web@ms.giec.ac.cn